메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승현 (고려대학교) 문종섭 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제28권 제5호
발행연도
2018.10
수록면
1,197 - 1,207 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
파워셸은 닷넷 프레임워크를 기반에 둔, 커맨드 라인 셸이자 스크립트 언어로, 그 자체가 가진 다양한 기능 외에도 윈도우 운영체제 기본 탑재, 코드 은닉 및 지속의 수월함, 다양한 모의 침투 프레임워크 등 공격 도구로서 여러 이점을 가지고 있다. 이에 따라 파워셸을 이용하는 악성코드가 급증하고 있으나 기존의 악성코드 탐지 기법으로 대응하기에는 한계가 존재한다. 이에 본 논문에서는 파워셸에서 실행되는 명령들을 관찰할 수 있는 개선된 모니터링 기법과, Convolutional Neural Network(CNN)을 이용해 명령에서 특징을 추출하고 실행 순서에 따라 Recurrent Neural Network(RNN)에 전달하여 악성 여부를 판단하는 딥 러닝 기반의 분류 모델을 제안한다. 악성코드 공유 사이트에서 수집한 파워셸 기반 악성코드 1,916개와 난독화 탐지 연구에서 공개한 정상 스크립트 38,148개를 이용하여 제안한 모델을 5-fold 교차 검증으로 테스트한 결과, 약 97%의 True Positive Rate(TPR)와 1%의 False Positive Rate(FPR)로 모델이 악성코드를 효과적으로 탐지함을 보인다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 제안방법
IV. 실험 및 평가
V. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000068514