메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오흥선 (한국기술교육대학교) 정유철 (금오공과대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제19권 제11호
발행연도
2018.11
수록면
758 - 764 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
특허(patent), 학술 논문(scholarly paper)과 연구 보고서(research report)와 같은 디지털 문서(digital document)에는 주제(topic)를 요약하는 저자 키워드(author keyword)가 있다. 서로 다른 문서가 동일한 키워드를 공유하고 있다면 두 문서가 동일한 주제의 내용을 기술하고 있을 가능성이 매우 높다. 문서 군집화(document clustering)는 비슷한 주제를 가지는 문서들을 비지도 학습 방법(unsupervised learning)을 이용하여 같은 군집으로 그룹(group)화 하는 것이다. 문서 군집화는 다양한 분석에 이용되지만 대용량의 문서 데이터에 적용하기 위해서는 많은 계산량이 필요함으로 쉽지 않다. 이러한 경우, 문서의 내용을 이용하는 것보다 문서의 키워드를 이용하여 군집화하면 더욱 효율적으로 대용량의 데이터를 연결할 수 있다. 기존의 상향식 군집화 방법(bottom-up hierarchical clustering)은 대용량의 키워드 군집화(keyword clustering)를 수행하는데 있어서 많은 시간이 필요하다는 문제점이 있다. 본 논문에서는 정보검색(information retrieval)에서 널리 사용되는 역인덱스(inverted-index) 구조를 상향식 군집화에 적용한 효율적인 군집화 방법을 제안하고, 제안 방법을 대용량의 키워드 데이터에 적용하였으며, 그 결과를 분석하였다.

목차

요약
Abstract
1. 서론
2. 제안 방법
3. 결과 분석
4. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000186464