메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강환 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제7호
발행연도
2020.7
수록면
942 - 948 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 상황인식 속성정보를 이용하여 클러스터링내에서 보다 효율적인 사용자 구분이 가능한 군집적 알고리즘을 제안한다. 일반적으로 클러스터링 데이터를 처리함에 있어 군집 정보내에서 상호관계를 분류하기 위해 제공되는 데이터는 신규 또는 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리될 경우, 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 K-means알고리즘을 이용함에 있어 사용자 인식 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제
안하는 알고리즘은 시스템 내 누적된 정보를 이용하여 자율적인 사용자 군집 특징을 분석하고, 이를 통하여 사용자의 속성간에 따른 클러스터를 구성해 사용자를 구분하게 된다. 제안한 알고리즘은 적용한 모의실험 결과를 통해 다중 사용자를 군집단위로 분류하고 유지하는 측면에서 사용자 관리 시스템이 보다 향상된 적응성을 보여주었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 본론
Ⅳ. 실험 및 성능평가
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001107011