메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김원욱 (한국해양수산연수원)
저널정보
한국수산해양교육학회 수산해양교육연구 수산해양교육연구 제30권 제6호(통권 제96호)
발행연도
2018.12
수록면
2,036 - 2,042 (7page)
DOI
10.13000/JFMSE.2018.12.30.6.2036

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autonomous ship led by private company will start commercial navigation in Europe 2020. In response to this trend, IMO defines 4 stage of autonomous ship as MASS(Maritime Autonomous Surface Ship) and is discussing details now. Korea Government is undergone feasibility studies as of 2018. As the first stage, Ulsan city was finally selected as the “Development Project of Smart Autonomous Ship Trial Center”. In other words, emergence and development of autonomous ship became the keyword of the 4th Industrial Revolution in maritime field. But from the operator’s point of view, there are many problems to be solved for the autonomous ship. Most of the marine accident are occupied by conflicts. Autonomous ship should solve this problems especially how to apply COLREG. Hence, this study will research collision avoid methods using AI(Artificial Intelligence) techniques. Autonomous navigation method of ship was experimented using the Reinforcement Learning technique “Q-Learning” which is famous because of Google" famous AI “Alpago”. To avoiding moving obstacles and calculate the safe route, AI techniques was applied. Sailing vessels should be analyzed in real time, however it takes quite long time to calculate because of nature of AI. For the future research, optimization of hardware and software and proper estimation of appropriate learning number is needed.

목차

Abstract
Ⅰ. 서론
Ⅱ. 분석 도구
Ⅲ. 분석 방법
Ⅳ. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-454-000146919