메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동욱 (Kyungpook National University) 석종원 (Changwon National University) 배건성 (Kyungpook National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제22권 제4호
발행연도
2018.12
수록면
1,044 - 1,049 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CNN(Convolutional Neural Networks)은 동물의 시각정보처리과정을 모델링한 신경망으로 다양한 분야에서 좋은 성능을 보여주고 있다. 본 논문에서는 CNN을 사용하여 능동소나 신호의 스펙트로그램을 분석하고, 표적과 비표적을 식별하는 연구를 수행하였다. 데이터를 표적이 포함된 비율에 따라 8클래스로 구분하고, CNN의 학습에 사용하였다. 신호의 스펙트로그램을 프레임별로 나누어 입력으로 사용한 결과, 표적신호의 위치에서만 표적신호에 해당하는 7개 클래스의 식별 결과가 순차적으로 나타나는 특성을 사용하여 표적과 비표적을 식별해낼 수 있었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-056-000342073