메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진태 (강원대학교) 이현구 (강원대학교) 김학수 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.3
발행연도
2019.3
수록면
246 - 252 (7page)
DOI
10.5626/JOK.2019.46.3.246

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
잘 알려진 검색 기반 챗봇 모델과 다르게 생성 기반 챗봇 모델은 사전에 정의된 응답에 의존하지 않고 학습된 신경망 모델을 사용하여 새로운 응답을 생성한다. 하지만 생성 기반 챗봇 모델은 발화-응답 쌍의 형태를 가진 대용량의 대화 말뭉치가 필요하다. 학습 말뭉치가 충분하지 않은 경우 구문론적 오류가 발생한다. 본 논문은 이 문제를 해결하기 위해 인코딩-디코딩 단위를 형태소와 음절이 복합적으로 사용된 시퀀스-투-시퀀스 신경망 기반의 챗봇을 제안한다. 또한 대용량의 비 대화 말뭉치를 이용하여 사전 학습하고 소량의 대화 말뭉치를 이용하여 재학습하는 2단계 학습 방법을 제안한다. 소량의 대화 말뭉치(47,089개의 발화-응답 쌍 학습 데이터와 3,000개의 발화-응답 쌍 평가 데이터)를 사용한 실험에서 제안한 인코딩-디코딩 단위는 미등록어 문제를 감소시키는데 도움을 주었고, 2단계 학습 방법은 BLEU와 ROUGE와 같은 성능 향상에 도움을 주었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 효율적인 학습 방법과 복합 표현 단위 인코딩-디코딩 기반 챗봇 모델
4. 실험
5. 결론
References

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0