메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Fufu Fang (University of East Anglia) Han Gong (University of East Anglia) Michal Mackiewicz (University of East Anglia) Graham Finlayson (University of East Anglia)
저널정보
한국색채학회 AIC 2017 Jeju 2017 AIC CONGRESS
발행연도
2017.10
수록면
48 - 53 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
For a camera image, the RGB response from the imaging sensor cannot be used to drive display devices directly. The reason behind this is two-fold: different cameras have different spectral sensitivities, and there are different target output spaces (e.g. sRGB, Adobe RGB, and XYZ). The process of mapping from captured RGBs to an output colour space is called colour correction. Colour Correction is of interest in its own right (e.g. for colour measurement), but it is also an important part of the colour processing pipelines found in digital cameras. In this paper, we look at the problem of mapping device RGB values to corresponding CIE XYZ tristimuli. We make three contributions. First, we review and implement a range of colour correction algorithms. We benchmark these algorithms in experiments using both synthetic data (so we can numerically assess a wider range of cameras) and real image data. In our second contribution, we develop an ensemble method to combine colour correction algorithms to further enhance performance. For the methods tested, we find there is small extra power in combining the methods. Our final - and perhaps most important contribution - is to provide an open source colour correction MATLAB toolbox for the community, implementing the algorithms described in the paper. As well, all our experimental data is provided.

목차

ABSTRACT
INTRODUCTION
COLOUR CORRECTION ALGORITHMS
ENSEMBLE COLOUR CORRECTION
RESULTS
COLOUR CORRECTION TOOLBOX
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-651-000499721