메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강라훈 (한양대학교) 박범준 (한양대학교) 정제창 (한양대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제2호
발행연도
2019.3
수록면
217 - 226 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 가이디드 영상 필터 (guided image filter: GIF)를 이용하여 컨볼루션 신경망 (convolutional neural network; CNN)을 이용한 역 톤 매핑 (inverse tone-mapping) 기법의 결과를 향상시킬 수 있는 필터링 기법을 제안한다. 저동적범위 (low dynamic range; LDR) 영상을 고동적범위 (high dynamic range; HDR) 디스플레이에서 표현할 수 있도록 변환하는 역 톤 매핑 기법은 지속적으로 제안되어왔다. 최근 들어 컨볼루션 신경망을 이용하여 단일 LDR 영상을 HDR 영상으로 변환하는 알고리듬이 많이 연구되었다. 그 중엔 제한된 동적범위 (dynamic range)로 인해 화소가 포화되어 기존 화소 정보가 손실되는데 이를 학습된 컨볼루션 신경망을 이용해서 복원하는 알고리듬이 존재한다. 해당 알고리듬은 비포화 영역의 잡음까지는 억제하지 못하며 포화 영역의 디테일까지는 복원하지 못한다. 제안한 알고리듬은 입력 영상에 가중된 가이디드 영상 필터 (weighted guided image filter; WGIF)를 사용해서 비포화 영역의 잡음을 억제하고 포화 영역의 디테일을 복원시킨 다음 컨볼루션 신경망에 인가하여 최종 결과 영상의 품질을 개선하였다. 제안하는 알고리듬은 HDR 정량적 화질평가 지표를 측정하였을 때 기존의 알고리듬에 비해 높은 화질평가 지수를 나타내었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 이론
Ⅲ. 제안하는 알고리듬
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-000547525