메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승우 (Kyungpook National University) 유관우 (Kyungpook National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제24권 제6호(통권 제183호)
발행연도
2019.6
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Hard disks, which have long been used as secondary storage in computing systems, are increasingly being replaced by solid state drives (SSDs), due to their relatively fast data input / output speeds and small, light weight. SSDs that use NAND flash memory as a storage medium are significantly different from hard disks in terms of physical operation and internal operation. In particular, there is a feature that data overwrite can not be performed, which causes erase operation before writing. In order to solve this problem, a hot data for frequently updating a data for a specific page is distinguished from a cold data for a relatively non-hot data. Hot data identification helps to improve overall performance by identifying and managing hot data separately. Among the various hot data identification methods known so far, there is a technique of recording consecutive write requests by using a Bloom filter and judging the values by hot data. However, the Bloom filter technique has a problem that a new bit array must be generated every time a set of items is changed. In addition, since it is judged based on a continuous write request, it is possible to make a wrong judgment. In this paper, we propose a method using a counting filter for accurate hot data verification. The proposed method examines consecutive write requests. It also records the number of times consecutive write requests occur. The proposed method enables more accurate hot data verification.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Experimental
Ⅴ. Conclusions
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0