메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Omtawan Mangkang (홍익대학교) Jae Young Yun (홍익대학교)
저널정보
한국HCI학회 한국HCI학회 논문지 한국HCI학회 논문지 2019 Vol.14 No.3
발행연도
2019.8
수록면
5 - 12 (8page)
DOI
10.17210/jhsk.2019.08.14.3.5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Depression is a highly prevalent illness not only in Korea but alsoaround the world. Recently, Artificial Intelligence (A.I.) has been used and contributed in the area of mental healthservice as well. This study aims to identify the most preferred platform for evaluating mental health conditions, particularly depression by analyzing the usability of 3 different platforms; (i)paper-based, (ii)text-based chatbot and (iii)voice-based chatbot. The indicators of usability considered in this study are effectiveness, learnability, reliability, humanness, and likability. Primary data in this paper gathered via survey and face-to-face interview with 50 participants. The result shows significant difference between humanness and likability across all platforms, however, there is no significant difference between text-based chatbot and voice-based chatbot in the aspect of effectiveness, learnability, and reliability. Owing to the highest mean, voice-base chatbot is the most preferred choice of the respondents. Thus, it is predicted that voice-based chatbot will become widely available in the near future as it is effective, easy to learn, reliable, human like and likable. Hence it should be taken into account in the field of depression therapy in the near future.

목차

Abstract
1. Introduction
2. Theoretical Background
3. Methodology
4. Results
5. Discussion
6. Conclusion
Reference

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000978159