메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장수영 (명지대학교) 손영익 (명지대학교) 강상희 (명지대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제68권 제9호
발행연도
2019.9
수록면
1,060 - 1,066 (7page)
DOI
10.5370/KIEE.2019.68.9.1060

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
According to the increase of electric power demand in the modern society the power system is gradually expanding. This results in a growing need for an intelligent method of fast determination and protection against various failures in the power system. As the computer platform is improved, the system fault detection and reliable protection devices have been trying to enhance their performances using artificial intelligence techniques. If a failure occurs in the single-machine infinite bus(SMIB) system. the electrical output of the generator changes, which can be regarded as a result of an external disturbance input. This paper presents a line fault detection method by using a reinforcement learning-based disturbance observer that estimates the magnitude of the equivalent disturbance. Reinforcement learning is an algorithm that models the relationship between the behavior of an agent and the reward from environment. This paper has adopted the Deep Q-Network for training of the proposed disturbance observer. The performance of the proposed reinforcement learning-based disturbance observer is verified by computer simulations. The results show that the disturbance can be estimated successfully and the estimate can be used to detect the line fault.

목차

Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-560-000971735