메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제14권 제4호
발행연도
2016.1
수록면
277 - 283 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions; NEWFM) 기반의 웨이블릿 변환(wavelet transform)과 힐버트 변환(Hilbert transform)에 의해 추출한 첨점(peak)을 사용하여 뇌파(EEG)로부터 정상 파형과 간질 파형을 분류하는 새로운 방안을 제안하였다. NEWFM의 입력을 추출하는데 다음과 같은 3개의 단계가 수행되었다. 첫 번째 단계에서는 뇌파로부터 잡음을 제거하기 위해서 웨이블릿 변환을 사용하였다. 두 번째 단계에서는 웨이블릿 계수로부터 첨점(peak)을 추출하기 위해서 힐버트 변환을 사용하였다. 또한 크기가 큰 첨점을 추출하기 위해서 첨점의 평균값보다 큰 첨점만을 선택하였다. 세 번째 단계에서는 통계적 방법을 이용하여 첨점으로부터 NEWFM의 입력으로 사용할 16개의 특징을 추출하였다. NEWFM은 이들 16개의 특징을 입력으로 사용하여 99.25%, 99.4%, 99%의 정확도, 특이도, 민감도를 각각 구하였다. 향후 연구에서는 특징선택을 이용하여 16개의 특징으로부터 좋은 특징을 선택하여 정확도를 향상시킬 계획이다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0