메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제32권 제2호
발행연도
2017.1
수록면
233 - 260 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a factorial domain. In this work we investigate the connections between the arithmetic of ${\rm Int}(R)$ (i.e., the ring of integer-valued polynomials over $R$) and its monadic submonoids (i.e., monoids of the form $\{g\in {\rm Int}(R)\mid g\mid_{{\rm Int}(R)} f^k$ for some $k\in\mathbb{N}_0\}$ for some nonzero $f\in {\rm Int}(R)$). Since every monadic submonoid of ${\rm Int}(R)$ is a Krull monoid it is possible to describe the arithmetic of these monoids in terms of their divisor-class group. We give an explicit description of these divisor-class groups in several situations and provide a few techniques that can be used to determine them. As an application we show that there are strong connections between ${\rm Int}(R)$ and its monadic submonoids. If $R=\mathbb{Z}$ or more generally if $R$ has sufficiently many ``nice'' atoms, then we prove that the infinitude of the elasticity and the tame degree of ${\rm Int}(R)$ can be explained by using the structure of monadic submonoids of ${\rm Int}(R)$.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0