메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장규환 (인천대학교)
저널정보
대한수학회 대한수학회지 대한수학회지 제58권 제1호
발행연도
2021.1
수록면
149 - 171 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $Cl(A)$ denote the class group of an arbitrary integral domain $A$ introduced by Bouvier in 1982. Then $Cl(A)$ is the ideal class (resp., divisor class) group of $A$ if $A$ is a Dedekind or a Pr\"ufer (resp., Krull) domain. Let $G$ be an abelian group. In this paper, we show that there is a ring of Krull type $D$ such that $Cl(D) = G$ but $D$ is not a Krull domain. We then use this ring to construct a Pr\"ufer ring of Krull type $E$ such that $Cl(E) = G$ but $E$ is not a Dedekind domain. This is a generalization of Claborn's result that every abelian group is the ideal class group of a Dedekind domain.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0