메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제28권 제1호
발행연도
2007.1
수록면
95 - 101 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of 10 μm. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of 100 μm due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0