메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives. In an effort to improve hearing aid users’ satisfaction, recent studies on trainable hearing aids have attempted to implement one or two environmental factors into training. However, it would be more beneficial to train the device based on the owner’s personal preferences in a more expanded environmental acoustic conditions. Our study aimed at developing a trainable hearing aid algorithm that can reflect the user’s individual preferences in a more extensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) and evaluated the perceptual benefit of the proposed algorithm. Methods. Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal preference and the trained data was used to record test sounds in three different settings to be utilized to evaluate the perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test. Results. Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant settings between the noise-only and speech-in-noise situation (P<0.05) and one subject also showed significant difference between the speech-only and speech-in-noise situation (P<0.05). Additionally, every subject preferred different β settings for beamforming in all different input sound levels. Conclusion. The positive findings from this study suggested that the proposed algorithm has potential to improve hearing aid users’ personal satisfaction under various ambient situations.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0