메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제20권 제6호
발행연도
2018.1
수록면
2,853 - 2,864 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
판별분석(discriminant analysis)은 새로운 개체가 입력되었을 때, 그 개체가 어느 그룹에 속하는지 예측하는데 사용되는 분석방법이다. 판별분석에서는 레이블(label)을 통해 새로운 개체를 예측하기 때문에 판별분석에서 레이블은 중요하다. 레이블 노이즈(label noise)는 관측된 레이블에 오류가 포함된 것을 의미하며, 실데이터에 발생하기 쉽고 판별성능에 영향을 미칠 수 있는 중요한 요인이다. 이를 개선하기 위해 레이블 노이즈와 레이블 노이즈에 강건한 모형들이 연구되고 있지만, 레이블 노이즈가 존재할 때 판별성능에 영향을 줄 수 있는 요인을 고려하고 이 요인들이 판별성능에 미치는 영향을 비교한 연구는 찾기 힘들다. 따라서 이 논문에서는 분류문제에서 많이 사용되는 LDA, QDA, KNN, SVM 방법을 이용하여 레이블 노이즈가 판별성능에 미치는 영향을 알아보고자 한다. 특히 판별분석의 성능과 연관이 있을 것으로 예상되는 레이블 노이즈의 발생 비율, 발생형태, 데이터의 개수에 따른 판별성능을 모의실험을 통해 살펴보았다. 그 결과, 데이터의 형태와 분석기법에 따라 레이블 노이즈가 판별성능에 영향을 미치는 정도가 다름을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0