메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제17권 제1호
발행연도
2015.1
수록면
19 - 25 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Among the knowledge discovery techniques used in data mining, association rules have received significant research attention. One of the general topics in association rule is development of good interestingness measures. Interestingness measures are the cornerstone of successful applications of association rule discovery and a meaningful scheme of interestingness measures may be based on user involvement. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The dependency factor expresses the degree of dependency, but considers only positive confidence. So, we proposed a new interestingness measure called balanced dependency factor considering simultaneously positive and inverse dependency factor, and compared the changing shape of three types of dependency. The results showed that if confidence is greater than a marginal probability, dependency factor is greater than 0. And if the sum of confidence and inverse confidence is less than 1, two item sets have negative association and the balanced dependency factor is less than 1. In contrast, if the sum is greater than 1, this measure is also greater than 1 and they have positive association.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0