메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC cell line SPC-A1 treated with cisplatin, as well as the apoptosis rates of SPC-A1. Second, serum miR-638 expression levels were detected in vivo by using nude mice xenograft models bearing SPC-A1 with and without cisplatin treatment. In the clinic, the serum miR-638 levels of 200 cases of NSCLC patients before and after chemotherapy were determined by quantitative real-time PCR, and the associations of clinicopathological features with miR-638 expression patterns after chemotherapy were analyzed. Our data helped in demonstrating that cisplatin induced apoptosis of the SPC-A1 cells in a dose- and time-dependent manner accompanied by increased miR-638 expression levels in the culture supernatants. In vivo data further revealed that cisplatin induced miR-638 upregulation in the serum derived from mice xenograft models, and in NSCLC patient sera, miR-638 expression patterns after chemotherapy significantly correlated with lymph node metastasis. Moreover, survival analyses revealed that patients who had increased miR-638 levels after chemotherapy showed significantly longer survival time than those who had decreased miR-638 levels. Our findings suggest that serum miR-638 levels are associated with the survival of NSCLC patients and may be considered a potential independent predictor for NSCLC prognosis.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0