메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Praba Hridayami (Udayana University) I Ketut Gede Darma Putra (Udayana University) Kadek Suar Wibawa (Udayana University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.13 No.3
발행연도
2019.9
수록면
124 - 130 (7page)
DOI
10.5626/JCSE.2019.13.3.124

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Conservation and protection of fish species is very important in aquaculture and marine biology. A few studies have introduced the concept of fish recognition; however, it resulted in poor rates of error recognition and conservation of a small number of species. This study presents a fish recognition method based on deep convolutional neural networks such as VGG16, which was pre-trained on ImageNet via transfer learning method. The fish dataset in this study consists of 50 species, each covered by 15 images including 10 images for training purpose and 5 images for testing. In this study, we trained our model on four different types of dataset: RGB color space image, canny filter image, blending image, and blending image mixed with RGB image. The results showed that blending image mixed with RGB image trained model exhibited the best genuine acceptance rate (GAR) value of 96.4%, following by the RGB color space image trained model with a GAR value of 92.4%, the canny filter image trained model with a GAR value of 80.4%, and the blending image trained model showed the least GAR value of 75.6%.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. PROPOSED METHOD
IV. EXPERIMENTAL RESULTS AND ANALYSES
V. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0