메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yerim Chung (Yonsei University) Hak-Jin Kim (Yonsei University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제24권 제10호(통권 제187호)
발행연도
2019.10
수록면
57 - 64 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 인터벌 그래프 컬러링 역문제 중 다항시간 안에 풀이 가능한 경우에 대해 연구한다. 인터벌 그래프의 컬러링 역문제는 주어진 인터벌 그래프를 K개의 서로 다른 색깔로 색칠할 수 없는 경우를 가정하며, 다음과 같이 정의된다. 주어진 인터벌 그래프가 K개의 색깔을 이용해서 모두 칠해질 수 있도록 인터벌 그래프와 연관되어 있는 인터벌 시스템을 최소한으로 수정하는 문제이다. 인터벌 시스템에서 두 인터벌이 부분적으로라도 서로 겹쳐있는 구간이 있을 경우 두 인터벌에 해당하는 노드들이 엣지로 연결되어 있음을 의미하고, 따라서 이 경우에는 해당 노드들을 같은 색깔을 이용해 칠할 수 없다. 따라서 겹쳐져 있는 인터벌들을 이동시켜 해당 그래프의 chromatic number를 바꿀 수 있다. 본 논문에서는 인터벌의 길이가 모두 1 또는 2이며, 인터벌의 이동이 본래 위치 대비 오른쪽으로만 가능하다는 제한이 있는 경우에 대해 집중 탐구한다. 이 문제를 해결하는 다항시간 알고리즘으로 sorting과 선입선출 방식을 사용하는 2단계 알고리즘을 제안한다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. A polynomial-time algorithm solving IBPR₁,₂
IV. The Proof for Optimality
V. Conclusion
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0