메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제8권 제1호
발행연도
2019.1
수록면
74 - 81 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근에 머신 러닝 기술은 의료, 제조, 마케팅, 금융, 방송, 농업 등 사회 전반에 많은 영향을 미치고 있고 미래에도 인류의생활에 많은 도움을 줄 것으로 예상된다. 본 논문에서는 인류의 생존에 가장 큰 영향을 주는 먹거리 즉, 농업 분야에 머신러닝기술을 적용하는 방법을 연구한다. 농업 분야에 IoT(Internet of Things) 기술을 접목하는 스마트 팜 (Smart Farm) 분야는생육환경을 실시간으로 모니터링 하여 농작물의 생육환경을 최적으로 유지 하는 방법을 중점적으로 연구한다. 최근 KT에서출시된 기가 스마트 팜 솔루션 2.0 에서는 머신러닝 기술을 사용하여 온실내의 온습도를 최적으로 유지하는 기술에 머신러닝을적용하였다. 기존의 스마트 팜 분야 연구가 생육환경 조절에 중점을 두어 생산성 증대에 집중되어 있지만 본 연구에서는 과일을최상의 품질 상태에서 수확하여 좋은 가격으로 출하할 수 있도록 수확시기에 머신러닝을 적용하는 방법을 연구한다. 스마트팜 분야에 머신러닝 기술을 적용하기 위해서는 풍부한 빅 데이터의 확보가 무엇보다 중요하므로 정확한 머신러닝 기술을 적용하기 위해서는 지속적으로 빅 데이터 수집이 가능해야 한다. 본 논문에서 수확시기 예측에 필요한 인자로는 온실 내에서 재배되는 과일의 색상 값과 무게 값, 내부 온습도 값을 색상센서 와 무게센서, 온습도센서를 사용하여 실시간으로 수집하여 확보한다. 본 논문에서 제안하는 FPSML은 유사 과일 재배에 반복적으로 사용할 수 있는 아키텍처를 제공하며 지속적으로 빅 데이터가축적될수록 보다 정밀한 수확시기를 예측할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0