메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한신경정신의학회 PSYCHIATRY INVESTIGATION PSYCHIATRY INVESTIGATION 제16권 제4호
발행연도
2019.1
수록면
262 - 269 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ObjectiveaaEnhanced technology in computer and internet has driven scale and quality of data to be improved in various areas including healthcare sectors. Machine Learning (ML) has played a pivotal role in efficiently analyzing those big data, but a general misunderstanding of ML algorithms still exists in applying them (e.g., ML techniques can settle a problem of small sample size, or deep learning is the ML algorithm). This paper reviewed the research of diagnosing mental illness using ML algorithm and suggests how ML techniques can be employed and worked in practice. MethodsaaResearches about mental illness diagnostic using ML techniques were carefully reviewed. Five traditional ML algorithms-Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naïve Bayes, and K-Nearest Neighborhood (KNN)-frequently used for mental health area researches were systematically organized and summarized. ResultsaaBased on literature review, it turned out that Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naïve Bayes, and K-Nearest Neighborhood (KNN) were frequently employed in mental health area, but many researchers did not clarify the reason for using their ML algorithm though every ML algorithm has its own advantages. In addition, there were several studies to apply ML algorithms without fully understanding the data characteristics. ConclusionaaResearchers using ML algorithms should be aware of the properties of their ML algorithms and the limitation of the results they obtained under restricted data conditions. This paper provides useful information of the properties and limitation of each ML algorithm in the practice of mental health.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0