메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고은해 (을지대학교 을지대학교병원 정신건강의학과) 강희양 (을지대학교병원 정신건강의학과) 김용식 (동국대학교 일산병원 정신건강의학과) 정성훈 (을지대학교)
저널정보
대한신경정신의학회 신경정신의학 신경정신의학 제56권 제3호
발행연도
2017.8
수록면
103 - 110 (8page)
DOI
https://doi.org/10.4306/jknpa.2017.56.3.103

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives Machine learning (ML) encompasses a body of statistical approaches that can detect complex interaction patterns from multi-dimensional data. ML is gradually being adopted in medical science, for example, in treatment response prediction and diagnostic classification. Cognitive impairment is a prominent feature of schizophrenia, but is not routinely used in differential diagnosis. In this study, we investigated the predictive capacity of the Wechsler Adult Intelligence Scale IV (WAIS-IV) in differentiating schizophrenia from non-psychotic illnesses using the ML methodology. The purpose of this study was to illustrate the possibility of using ML as an aid in differential diagnosis. Methods The WAIS-IV test data for 434 psychiatric patients were curated from archived medical records. Using the final diagnoses based on DSM-IV as the target and the WAIS-IV scores as predictor variables, predictive diagnostic models were built using 1) linear 2) non-linear/non-parametric ML algorithms. The accuracy obtained was compared to that of the baseline model built without the WAIS-IV information. Results The performances of the various ML models were compared. The accuracy of the baseline model was 71.5%, but the best non-linear model showed an accuracy of 84.6%, which was significantly higher than that of non-informative random guessing (p=0.002). Overall, the models using the non?linear algorithms showed better accuracy than the linear ones. Conclusion The high performance of the developed models demonstrated the predictive capacity of the WAIS-IV and justified the application of ML in psychiatric diagnosis. However, the practical application of ML models may need refinement and larger-scale data collection.

목차

등록된 정보가 없습니다.

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0