메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한한방소아과학회 대한한방소아과학회지 대한한방소아과학회지 제33권 제2호
발행연도
2019.1
수록면
22 - 31 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: This study is to learn the effects of Hataedock method using Coptidis rhizoma and Glycyrrhiza uralensis mixed extract on inflammatory response in allergic rhinitis-induced obese NC/Nga mice. Materials and Methods: The mice were fed with high fat-diet to be obese, and were divided into 3 groups as follows; allergic rhinitis-induced obese mice group with Hataedock method (CGT, n=10), no treatment group (Ctrl), allergic rhinitis elicited obese mice group (ARE). To induce allergic rhinitis, NC/Nga mice of 3 weeks age were sensitized on 7, 8 and 9 weeks by ovalbumin antigen in intraperitoneal space. After 7 days of final sensitization, allergic rhinitis was initially induced in mice through nasal cavities for 5 days. After 1-week, allergic rhinitis was induced again by the same method. Histological examination was used to identify distribution of IL-4, CD40, STAT6, FcɛRI, substance P, MMP-9, NF-κB p65, iNOS and COX-2. Results: Hataedock method significantly reduced IL-4, STAT6 and CD40 response (p<0.05). In CGT, the inhibition of Th2 differentiation decreased inflammatory mediators such as FcɛRI, substance P, MMP-9, NF-κB p65, iNOS and COX-2 (all p<0.05). The immunological improvement led reduction of respiratory epithelial damage and mucin secretion in goblet cell. Conclusion: The results of this study show that the Hataedock method suppresses the expression of allergic rhinitis by decreasing the inflammatory mediators through the regulation of Th2 differentiation even when the inflammation reaction is increased by obesity. Therefore, Hataedock may have potential preventive measure of allergic rhinitis accompanied by obese.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0