메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제17권 제7호
발행연도
2019.1
수록면
285 - 292 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PC, SNS, IoT의 대중화로 수많은 데이터가 생성되고 그 양은 기하급수적으로 증가하고 있다. 거대한 양의 데이터를 활용하는 방법으로 인공신경망 학습은 최근 많은 분야에서 주목받는 주제이다. 인공신경망 학습은 음성인식, 이미지 인식에서 엄청난 잠재력을 보였으며 더 나아가 의료진단, 인공지능 게임 및 얼굴인식 등 다양하고 복잡한 곳에 광범위하게 적용된다. 인공신경망의 결과는 실제 인간을 능가할 정도로 정확성을 보이고 있다. 이러한 많은 이점에도 불구하고 인공신경망 학습에는 여전히 프라이버시 문제가 존재한다. 인공신경망 학습을 위한 학습 데이터에는 개인의 민감한 정보를 포함한 다양한 정보가 포함되어 악의적인 공격자로 인해 프라이버시가 노출될 수 있다. 공격자가 학습하는 도중 개입하여 학습이 저하되거나 학습이 완료된 모델을 공격할 때 발생하는 프라이버시 위험이 있다. 본 논문에서는 최근 제안된 신경망 모델의 공격 기법과 그에 따른 프라이버시 보호 방법을 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0