메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국패션비즈니스학회 패션 비즈니스 패션 비즈니스 제23권 제3호
발행연도
2019.1
수록면
85 - 100 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study examines changes in consumer perceptions of fashion shows, which are critical elements in the apparel industry and a means to represent a brand’s image and originality. For this purpose, big data in clothing marketing, text mining, semantic network analysis techniques were applied. This study aims to verify the effectiveness and significance of fashion shows in an effort to give directions for their future utilization. The study was conducted in two major stages. First, data collection with the key word, “fashion shows,” was conducted across websites, including Naver and Daum between 2015 and 2018. The data collection period was divided into the first- and second-half periods. Next, Textom 3.0 was utilized for data refinement, text mining, and word clouding. The Ucinet 6.0 and NetDraw, were used for semantic network analysis, degree centrality, CONCOR analysis and also visualization. The level of interest in “models” was found to be the highest among the perception factors related to fashion shows in both periods. In the first-half period, the consumer interests focused on detailed visual stimulants such as model and clothing while in the second-half period, perceptions changed as the value of designers and brands were increasingly recognized over time. The findings of this study can be utilized as a tool to evaluate fashion shows, the apparel industry sectors, and the marketing methods. Additionally, it can also be used as a theoretical framework for big data analysis and as a basis of strategies and research in industrial developments.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0