메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ji-Hoon Han (Hoseo University) Dong-Jin Choi (Hoseo University) Sang-Uk Park (Hoseo University) Sun-Ki Hong (Hoseo University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,234 - 1,237 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Signals of the motor failure, such as a bearing or gear fault, are proportional to its mechanical characteristics. These characteristics generate similar signal patterns for the same fault. However, signals in poor installation maintenance depend on how to install them. This means that a different signal pattern occurs in the same fault state. In this paper, DT-CNN (Decision Tree Convolutional Neural Network) algorithm is proposed to solve the above problems in applying deep learning to motor fault diagnosis. The supervised learning cannot verify outlier data. The proposed algorithm complements this disadvantage by using over fitted CNN in the selection process of the decision tree. In order to verify the performance of this algorithm, normal and gear fault data were collected. The data were collected by varying the motor installation state. Using these data, DT-CNN algorithm was implemented and it succeeded in detecting the maintenance failure signal almost similar to the normal state and the validity was confirmed.

목차

Abstract
1. INTRODUCTION
2. PROPOSED SYSTEM
3. EXPERIMENT
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0