메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제14권 제6호
발행연도
2019.1
수록면
287 - 294 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the automation of production lines in the manufacturing industry, the importance of real-time fault diagnosis of facility is increasing. In this paper, we propose a fault diagnosis algorithm of LM (Linear Motion)-guide based on deep learning using vibration signals. Generally, in order to guarantee the performance of the deep learning, it is necessary to have a sufficient amount of data, but in a manufacturing industry, it is often difficult to obtain enough data due to physical and time constraints. To solve this problem, we propose a convolutional neural networks (CNN) model based on transfer learning. In addition, the spectrogram image is input to the CNN to reflect the frequency characteristic of the vibration signals with time. The performance of fault diagnosis according to various load condition and transfer learning method was compared and evaluated by experiments. The results showed that the proposed algorithm exhibited an excellent performance.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0