메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이지원 (건국대학교) 이혜진 (건국대학교) 김예진 (건국대학교) 유현재 (건국대학교) 임창훈 (건국대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2019년도 대한전자공학회 추계학술대회 논문집
발행연도
2019.11
수록면
762 - 765 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose to apply the random initialization method for generative image inpainting. In experiments, we compare the training results and reconstructed images between the existing initialization method and the random initialization method for generative image inpainting. Experimental results show that the random initialization method reduces the losses in training process and improves the reconstructed image qualities for some cases compared with the existing initialization method.

목차

Abstract
I. 서론
II. 제안하는 방법
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000093456