메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
S Petley (Lancaster University) G A Aggidis (Lancaster University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.12 No.4
발행연도
2019.12
수록면
400 - 417 (18page)
DOI
10.5293/IJFMS.2019.12.4.400

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many consider the Pelton turbine a mature technology, nevertheless the advent of Computational Fluid Dynamics (CFD) in recent decades has been a key driver in the continued design development. Impulse turbine casings play a very important role and experience dictates that the efficiency of a Pelton turbine is closely dependent on the success of keeping vagrant spray water away from the turbine runner and the water jet. Despite this overarching purpose, there is no standard design guidelines and casing styles vary from manufacturer to manufacturer, often incorporating a considerable number of shrouds and baffles to direct the flow of water into the tailrace with minimal interference with the aforementioned. The present work incorporates the Reynolds-averaged Navier Stokes (RANS) k-ɛ turbulence model and a two-phase Volume of Fluid (VOF) model, using the ANSYS® FLUENT® code to simulate the casing flow in a 2-jet horizontal axis Pelton turbine. The results of the simulation of two casing configurations are compared against flow visualisations and measurements obtained from a model established at the National Technical University of Athens. Further investigations were carried out in order to compare the absolute difference between the numerical runner efficiency and the experimental efficiency. In doing so, the various losses that occur during operation of the turbine can be appraised and a prediction of casing losses can be made. Firstly, the mechanical losses of the test rig are estimated to determine the experimental hydraulic efficiency. Following this, the numerical efficiency of the runner can then be ascertained by considering the upstream pipework losses and the aforementioned runner simulations, which are combined with previously published results of the 3D velocity profiles obtained from simulating the injectors. The results indicate that out of all of the experimental cases tested, in the best case scenario the casing losses can be approximated to be negligible and in the worst case scenario ≈3%.

목차

Abstract
1. Introduction
2. Experimental Results
3. Numerical Model
4. Loss Analysis of a Typical Experiment and Casing Efficiency
5. Conclusions
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-554-000379389