메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pratap Khuntia (National Institute of Technology) Ranjay Hazra (National Institute of Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.1
발행연도
2020.2
수록면
75 - 84 (10page)
DOI
10.5573/IEIESPC.2020.9.1.075

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a novel actor-critic reinforcement learning (RL) based on policy gradient is proposed to solve the channel and power allocation issues for a device-to-device (D2D) enabled cellular network when prior traffic information was not provided to the base station (BS). Furthermore, in this paper, we design a system to learn the optimal policy for resource and power allocation between cellular users (CUs) and D2D users, aimed at maximizing the sum rate of the overall system. Since the behavior of wireless channels, and the received reward in each state associated with the system, is stochastic in nature, the dynamic property of the environment allows us to apply an actor-critic RL technique to learn the best policy through continuous interaction with the surroundings. The policy-based approach is better than a value-based scheme, such as Qlearning, because it takes the help of policy space in order to maximize the expected throughput. The actor adopts a parameter-based stochastic policy for continuous actions, while the critic evaluates the policy through its overall performance, and criticizes the actor for the policy it follows. Through numerical simulations, we verify the performance of our proposed work with the existing methods.

목차

Abstract
1. Introduction
2. System Model
3. Actor-critic-based Reinforcement Learning for Resource Allocation
4. Actor-critic Process
5. Numerical Results
6. Conclusion
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0