메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정승환 (부산대학교) 김민석 (부산대학교) 이한수 (부산대학교) 김종근 (부산대학교) 김성신 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제2호
발행연도
2020.2
수록면
192 - 197 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대규모 발전소나 화학공정과 같은 다변량 공정은 매우 위험한 환경에서 운전되기 때문에 고장이 발생하면 심각한 인적 · 물적 손실이 발생할 수 있다. 따라서 시스템의 고장을 사전에 탐지할 수 있는 온라인 모니터링 기술이 필수적이다. 본 논문에서는 세 가지의 다른 다변량 공정 데이터에 ICA를 적용하여 고장탐지를 수행하였고, PCA와 성능을 비교하였다. ICA 기반의 고장탐지 절차는 크게 오프라인 과정과 온라인 과정으로 나뉜다. 오프라인 과정에서는 시스템이 정상일 때 계측된 데이터를 이용하여 고장판별을 위한 문턱 값을 설정한다. 그리고 온라인 과정에서는 실시간으로 계측되는 질의벡터에 대한 통계량을 계산한 후, 계산된 통계량과 사전에 정의된 문턱 값과 비교하여 고장을 판별한다. 본 논문에서 이용한 세 가지의 다변량 공정 데이터에 실험한 결과, ICA 기반 고장탐지 방법이 시스템의 고장을 사전에 탐지하였고, PCA 보다 우수한 고장탐지 성능을 보여주었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 고장탐지방법
Ⅲ. 대상 시스템: 다변량 공정 모델
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000454044