메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조성민 김우생 (광운대학교)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.27 No.1
발행연도
2020.2
수록면
49 - 58 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Lately, a large amount of textual data have been poured out of the Internet and the technology to refine them is needed. Most of these data are long text and often have no title. Therefore, in this paper, we propose a technique to combine the sequence-to-sequence model of RNN and the REINFORCE algorithm to generate the title of the long text automatically. In addition, the TextRank algorithm was applied to extract a summarized text to minimize information loss in order to protect the shortcomings of the sequence-to-sequence model in which an information is lost when long texts are used. Through the experiment, the techniques proposed in this study are shown to be superior to the existing ones.

목차

Abstract
1. 서론
2. 관련 연구
3. RNN과 강화 학습을 결합한 제목 생성 모델
4. 실험
5. 결과 및 성능 평가
6. 결론 및 추후 연구
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-005-000410478