메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김창완 (명지대학교) 신동일 (명지대학교)
저널정보
한국가스학회 한국가스학회지 한국가스학회지 제24권 제1호
발행연도
2020.2
수록면
56 - 65 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일반적으로 화재는 다양한 원인으로 발생하며 무작위로 보이기에 화재의 발생을 예측한다는 것은 매우 도전적인 문제이다. 하지만 모든 화재가 아닌 큰 피해를 주는 초대형 화재사고의 예측이 가능하다면, 선제적 대응을 통한 손실 최소화를 기대할 수 있다. 본 연구에서는 국가 전체를 대상으로 초대형 화재사고를 예측하기 위해 기계학습 기법인 k-평균 클러스터링을 이용하여 화재사고를 분류하고, 이를 인위적인 설정이 강한 비전문가 기준, 전문가 기준 분류 결과와 비교하여 예측에 적절한 분류 기준을 제안하였다. 비교 결과 기계학습을 이용한 분류가 일정한 피해 규모와 비율로 분류되어, 예측에 적절한 분류 기준이라 판단하였다. 또한 초대형 화재사고의 주기성을 분석한 결과 일정한 패턴을 보였지만 높은 편차를 보였다. 따라서 단순 예측기법이 아닌 고급 예측기법을 사용하였을 때 초대형 화재사고의 발생 예측이 가능하다고 판단되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론
Ⅲ. k-평균 클러스터링 기반의 화재사고 분류
Ⅳ. 결과 및 고찰
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0