메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강산 (POSTECH) 나주원 (POSTECH) 손종덕 (KEPRI) 손석만 (KEPRI) 이승철 (POSTECH)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제30권 제2호(통권 253호)
발행연도
2020.4
수록면
136 - 142 (7page)
DOI
10.5050/KSNVE.2020.30.2.136

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Tabulated data has been widely used to facilitate systematic and intuitive management. In particular, tabular images that contain a few simple symbols are useful for maintaining mechanical systems. Several companies have accumulated tabular images as their property. Although these images are valuable as they can be used to solve difficult problems using data-based methods, such as deep learning, they still remain unavailable because it is expensive to digitize them. For these reasons, we propose a model comprised of a convolutional neural network (CNN) and fully convolutional network (FCN) to digitize tabular images. We used some ResNet components as they are well-suited to the characteristics of tabular image data. A training set for each model was constructed by writing symbols in blank tables and then augmenting them. As a result, the trained CNN and FCN models exhibited 99.2 % and 97.7 % accuracy in 4.75 s and 0.132 s of inference time, respectively.

목차

ABSTRACT
1. 서론
2. 실험 설계
3. 학습 데이터 준비
4. 실험 및 결과
5. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-424-000541448