메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Muhammad Yaqub (Kumoh National Institute of Technology) Seung Hwan Lee (Kumoh National Institute of Technology)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제26권 제1호
발행연도
2021.2
수록면
31 - 37 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The optimization of micellar-enhanced ultrafiltration (MEUF) of arsenic (As) contaminated aqueous solution using cetylpyridinium chloride (CPC) as surfactant was studied through experimental and artificial neural network (ANN) modeling. Experimental studies were carried out by varying operational conditions such as time, pressure, molar ratio of CPC to As, concentration of As and pH of feed solution. Root mean square error (RMSE) and coefficient of determination (R²) were considered as performance criterion to evaluate the predicted results of ANN model. The experimental studies provided optimum operating parameters such as pressure 1.8 bar, molar ratio of CPC to As was 5:1, As concentration 1 mM and pH 8.0 of feed solution. ANN model presented reliable results with RMSE values 0.259, 0.553 and 0.623 for training, validation and testing datasets, respectively, while R² values for training, validation and testing dataset were noted as 0.962, 0.942 and 0.932, respectively. The proposed ANN model traced input-output relationship to predict As removal efficiency (RE) of MEUF process. Therefore, ANN model can be considered as a competitive, powerful and fast alternate because of its high computational speed, accuracy and economics in MEUF process optimization without doing laborious experimental work.

목차

ABSTRACT
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-539-000545599