메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Samir Khatir (Ho Chi Minh City Open University) Meriem Seguini (University of Sciences and Technology of Oran Mohamed Boudiaf) Djilali Boutchicha (USTO-MB) Djamel Nedjar (University of Sciences and Technology of Oran Mohamed Boudiaf) Magd Abdel Wahab (Duy Tan University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.3
발행연도
2021.1
수록면
507 - 523 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a crack identification using Artificial Neural Network (ANN) is investigated to predict the crack depth in pipeline structure based on modal analysis technique using Finite Element Method (FEM). In various fields, ANN has become one of the most effective instruments using computational intelligence techniques to solve complex problems. This paper uses Particle Swarm Optimization (PSO) to enhance ANN training parameters (bias and weight) by minimizing the difference between actual and desired outputs and then using these parameters to generate the network. The convergence study during the process proves the advantage of using PSO based on two selected parameters. The data are collected from FEM based on different crack depths and locations. The provided technique is validated after collecting the data from experimental modal analysis. To study the effectiveness of ANN-PSO, different hidden layers values are considered to study the sensitivity of the predicted crack depth. The results demonstrate that ANN combined with PSO (ANN-PSO) is accurate and requires a lower computational time in terms of crack identification based on inverse problem.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0