메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조재한 (Kumoh National Institute of Technology) 이이섭 (Kumoh National Institute of Technology)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제4호(통권 제193호)
발행연도
2020.4
수록면
37 - 45 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝의 개발 프로세스는 대량의 수작업이 요구되는 반복적인 작업으로 그 중 학습 데이터 전처리는 매우 큰 비용이 요구되며 학습 결과에 중요한 영향을 주는 단계이다. AI의 알고리즘 연구초기에는 주로 데이터 과학자들에 의해 완벽하게 정리하여 제공된 공개 DB형태의 학습데이터를 주로 사용하였다. 실제 환경에서 수집된 학습 데이터는 주로 센서들의 운영 데이터이며 필연적으로 노이즈가 많이 발생할 수 있다. 따라서 노이즈를 제거하기 위한 다양한 데이터 클리닝 프레임워크와 방법들이 연구되었다. 본 논문에서는 IoT환경에서 발생 될 수 있는 센서 데이터와 같은 시계열 데이터에서 노이즈를 감지하고 제거하는 방법을 제안하였다. 이 방법은 선형회귀 방법을 사용하여 시스템이 반복적으로 노이즈를 찾아내고, 이를 대체할 수 있는 데이터를 제공하여 학습데이터를 클리닝한다. 제안된 방법의 효과를 검증하기 위해서 본 연구에서 시뮬레이션을 수행하여, 최적의 클리닝 결과를 얻을 수 있는 인자들의 결정 방법을 확인하였다.

목차

[Abstract]
[요약]
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. Cleaning Noises from Time Series Data with Memory Effects
Ⅳ. Simulation & Analysis
Ⅴ. Conclusions
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0