메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최종현 (광주과학기술원)
저널정보
한국방송·미디어공학회 방송과 미디어 방송과 미디어 제25권 제2호
발행연도
2020.4
수록면
36 - 43 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AI 시스템은 우리 생활 전반에서 다양한 예측을 도와주는 장치로써 그 중요성이 크다. AI 시스템의 활용도는 AI 장치가 얼마나 우리 생활 전반에 다각도로 이용되어야 하는지에 달려있다. 현재 AI 시스템은 높은 정확도를 위해 학습과 추론에 고성능 컴퓨팅 장비를 필요로 한다. 고성능 장치를 우리 생활 저변에서 쉽게 설치하고 사용할 수 없기 때문에, AI 시스템을 우리 생활에 사용하기 위해서 크게 두 가지의 접근법을 사용하고 있다. 첫째, 고성능 네트워크와 고성능 컴퓨팅 서버를 사용하여 end-user 장치의 계산 복잡도를 최소화하는 시스템을 설계할 수 있다. 둘째, AI 시스템의 학습 및 추론 효율성을 높여, 서버와 네트워크 없이도 end-user 장치에서 최선의 성능을 내는 시스템을 설계할 수 있다. 첫번째 접근법은 고성능 네트워크의 발전을 수반하고, 네트워크의 항상성을 전제로 하기 때문에, 실현하는데 많은 시간과 자원이 요구된다. 두번째 접근법은 비용-효율적이긴 하나 첫번째 접근법에 비해 AI 시스템의 성능이 다소 떨어질 수 있다. 이 글에서는 두번째 접근법의 AI 시스템, 특히 시각 인식 시스템을 응용으로 하는 기술들을 살펴보도록 하겠다.

목차

요약
Ⅰ. 서론
Ⅱ. 지식 증류 기법(Knowledge Distillation)
Ⅲ. 네트워크 가지치기(Pruning)
Ⅳ. 파라미터 양자화(Parameter Quantization)
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000577206