메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Park, Jin Sue (ALLforLAND) Park, Wan Yong (Agency for Defense Development) Eo, Yang Dam (Konkuk University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제38권 제2호
발행연도
2020.4
수록면
97 - 107 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To analyze temporal and spatial changes in vegetation, it is necessary to determine the associated continuous distribution and conduct growth observations using time series data. For this purpose, the normalized difference vegetation index, which is calculated from optical images, is employed. However, acquiring images under cloud cover and rainfall conditions is challenging; therefore, time series data may often be unavailable. To address this issue, La et al. (2015) developed a multilinear simulation method to generate missing images on the target date using the obtained images. This method was applied to a small simulation area, and it employed a simple analysis of variables with lower constraints on the simulation conditions (where the environmental characteristics at the moment of image capture are considered as the variables). In contrast, the present study employs variables that reflect the growth characteristics of vegetation in a greater simulation area, and the results are compared with those of the existing simulation method. By applying the accumulated temperature, the average coefficient of determination (R²) and RMSE (Root Mean-Squared Error) increased and decreased by 0.0850 and 0.0249, respectively. Moreover, when data were unavailable for the same season, R² and RMSE increased and decreased by 0.2421 and 0.1289, respectively.

목차

Abstract
1. Introduction
2. Methodology
3. Simulation and Results
4. Conclusion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-533-000586705