메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeoil Yun (Kookmin University) Namgyu Kim (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제5호(통권 제194호)
발행연도
2020.5
수록면
187 - 197 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 신경망 기반의 학습 알고리즘인 딥 러닝 기술의 발전으로 인해 텍스트의 문맥을 고려한 문서 임베딩 모델이 다양하게 고안되었으며, 특히 대량의 텍스트 데이터를 사용하여 학습을 수행한 사전 학습 언어 모델을 사용하여 분석 문서의 벡터를 추론하는 방식의 임베딩이 활발하게 연구되고 있다. 하지만 기존의 사전 학습 언어 모델을 사용하여 새로운 텍스트에 대한 임베딩을 수행할 경우 해당 텍스트가 가진 고유한 정보를 충분히 활용하지 못한다는 한계를 가지며, 이는 특히 텍스트가 가진 토큰의 수에 큰 영향을 받는 것으로 알려져 있다. 이에 본 연구에서는 다수의 토큰을 포함한 장문 텍스트의 정보를 최대한 활용하여 해당 텍스트의 벡터를 도출할 수 있는 자기 지도 학습 기반의 사전 학습 언어 모델 미세 조정 방법을 제안한다. 또한, 제안 방법론을 실제 뉴스 기사에 적용하여 문서 벡터를 도출하고 이를 활용하여 뉴스의 카테고리 분류 실험을 수행하는 외부적인 임베딩 평가를 수행함으로써, 제안 방법론과 기존 문서 임베딩 모델과의 성능을 평가하였다. 그 결과 제안 방법론을 통해 도출된 벡터가 텍스트의 고유 정보를 충분히 활용함으로써, 문서의 특성을 더욱 정확하게 표현할 수 있음을 확인하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Related Research
III. Proposed Method
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0