메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박진희 김태훈 (경북대학교) 추승연 (경북대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 大韓建築學會論文集 計劃系 第36卷 第5號(通卷 第379號)
발행연도
2020.5
수록면
93 - 103 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The purpose of this study is to suggest a supervisory way to improve the efficiency of Building Supervision using Deep Learning, especially object detecting technology. Since the establishment of the Building Supervision system in Korea, it has been changed and improved many times systematically, but it is hard to find any improvement in terms of implementing methods. Therefore, the Supervision is until now the area where a lot of money, time and manpower are needed. This might give a room for superficial, formal and documentary supervision that could lead to faulty construction. This study suggests a way of Building Supervision which is more automatic and effective so that it can lead to save the time, effort and money. And the way is to detect the hoop-bars of a column and count the number of it automatically. For this study, we made a hoop-bar detecting network by transfor learnning of YOLOv2 network through MATLAB. Among many training experiments, relatively most accurate network was selected, and this network was able to detect rebar placement in building site pictures with the accuracy of 92.85% for similar images to those used in trainings, and 90% or more for new images at specific distance. It was also able to count the number of hoop-bars. The result showed the possibility of automatic Building Supervision and its efficiency improvement.

목차

Abstract
1. 서론
2. 감리 관련 지침 및 딥러닝 객체검출기술에 대한 선행연구 분석
3. 객체 검출 네트워크 구축
4. 딥러닝 기반 객체 디텍팅 기술의 구현
5. 결론
REFERENCES

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0