메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최승환 (KEPRI) 채창훈 (KEPRI) 임찬욱 (Korea Institute of Science and Technology Information) 박운상 (Sogang University) 최민희 (Korea Electric Power Research Institute)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제6호
발행연도
2020.6
수록면
772 - 782 (11page)
DOI
10.5370/KIEE.2020.69.6.772

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Over the past few decades the capacity of the power transmission system is growing more and more rapidly, and the power systems have also been expanding in line with continuous expansion of infrastructure. Efficient maintenance of the transmission infrastructure is critical for stable power system operation. However, since the transmission infrastructure is installed at a high location from the ground, the maintenance and diagnosis on transmission towers always involves the possibility of the safety accident of workers. Since 2016, Korea Electric Power Corporation has been developing technologies for monitoring and diagnosis of power lines using drones and has verified the usefulness of technologies through on-site demonstration. 3GBytes of video will be acquired by one flight. And video analysis is performed by below process. ① A worker finds an image frame that includes a transmission tower and power facilities, ② and expands the area of interest in the image, ③ finally the visually observes the facilities and determines whether defects are. These process requires the concentration of the operator and causes very high fatigue. To solve these problems, it is necessary to develop an image analysis algorithm for automatic detection of transmission towers and power facilities to automatically find image frames containing facilities and automatically enlarge the area of interest in the frame to provide diagnosis operator. In this paper describes the process of building a learning and testing image database for detecting transmission towers and facilities carried out for the development of these algorithms and the process of developing algorithms using deep learning CNN-YOLO v2(Convolutional Neural Network - You Only Look Once v2) and the improvement of performance aspects including accuracy and speed with existing algorithms. The recall and precision rate of YOLO v2 for detecting transmission infrastructure is 96.30% and 95.65% respectively, which is more accurate and faster than YOLO v1.

목차

Abstract
1. 서론
2. 기계학습 데이터베이스 구축
3. 송전설비 검출 기계학습 알고리즘 검토 및 선정
4. 실험 결과 및 알고리즘 최적화
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0