메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이연경 (국민대학교) 고현성 (국민대학교) 이진우 (국민대학교) 김준호 (국민대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제26권 제3호
발행연도
2020.7
수록면
87 - 97 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 사용자가 지정한 반사 하이라이트 맵을 가이드 영상으로 하는뉴럴 재조명 기법을 제안한다. 제안하는 신경망은 다양한 조명 위치에서 렌더링 된 영상을이용해 사전학습시킨 백본 뉴럴 렌더러를 활용하며, 기저 영상과 렌더링 영상의 차이가 사용자가 제공한 반사 하이라이트 맵과 유사하도록 역전파에 의해 광원의 위치와 관련된 재조명 영상을 동시 최적화 한다. 제안하는 방법은 아티스트가 선호하는 이차원 화면 공간 인터페이스를 제공하면서도 삼차원 조명의 위치를 명시적으로 추론할 수 있는 장점이있다. 제안하는뉴럴 재조명의 성능은 실제 값을 설정할 수 있는 실험 상황을 수립하여, 본 논문의 방법이 주어진 하이라이트 맵을 얼마나 잘 반영하는지 평가하고 실제 하이라이트 맵으로 추론한 조명 및 재조명 영상의 오차를 측정하였다. 제안하는 뉴럴 재조명이 추정한 광원 위치의 평균 오차율은 정규화된 삼차원 장면 크기 대비 0.11이다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 프레임워크
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000882333