메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dabin You (Shinhan Investment) Ha Yoon Song (Hongik University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.14 No.2
발행연도
2020.6
수록면
52 - 65 (14page)
DOI
10.5626/JCSE.2020.14.2.52

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many modern portable devices, especially smartphones, are equipped with positioning functionality. The rapid growth in the use of such devices has allowed for the accumulation of a vast amount of positioning data. Combined with deep learning methods, these data may be used for many novel applications. Herein, a trajectory pattern tree generation method via deep learning is proposed. The convolutional neural network (CNN) and recurrent neural network (RNN) model of deep learning were applied for trajectory generation and prediction. Several volunteers provided their raw positioning data. The trajectory generation and prediction are for individual mobility patterns and were performed for every volunteer. We present the results obtained from seven volunteers. The preciseness of prediction can be measured both for CNN and RNN. Consequently, we can predict an individual’s location with 32.98% accuracy, and predict the top-five up to 69.22% for unit area size of 0.030 km².

목차

Abstract
I. INTRODUCTION
II. RELATED WORKS
III. BACKGROUNDS
IV. PREDICTION OF OBJECT’S TRAJECTORY AND CREATION OF TRAJECTORY PATTERN
V. ACCURACY MEASUREMENT OF PREDICTED TRAJECTORY PATTERN
VI. PREPARATION OF EXPERIMENT
VII. RESULTS
VII. CONCLUSIONS
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000854044