메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이의훈 (충북대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제7호
발행연도
2020.07
수록면
29 - 37 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
과거 자연현상에서 발생하는 복잡한 비선형성에 따른 문제를 해결하기 위해 메타 휴리스틱 최적화 알고리즘들이 개발되었고 개발된 알고리즘의 적용성을 검토하기 위해 다양한 연구들이 진행되었다. Self-adaptive vision correction algorithm (SAVCA)는 수학 문제에서는 우수한 성능을 보여주었지만 복잡한 공학 문제들에 적용되지 않았을 뿐만 아니라 SAVCA의 적용과정에 대한 검토가 필요하다. SAVCA의 공학 문제에 대한 적용 및 적용과정에 대한 검토를 위해 최근 개발되어 우수한 성능을 보여주었던 advanced nonlinear Muskingum flood routing model(ANLMM-L)에 적용하였다. 먼저 SAVCA에 의해 초기 해집합을 생성한 후 ANLMM-L을 통해 적합도를 산출하였다. 국지탐색 및 전역탐색에 의해 선택된 새로운 값을 SAVCA에 넣고 새로운 해를 생성한 후 다시 ANLMM-L을 적용하여 적합도를 계산하였다. 새로운 해와 기존 해집합의 결과를 비교하여 개량하는 방법을 통해 마지막 연산이 진행되었다. 관측 유출량과 계산된 유출량과의 오차를 계산하기 위해 sum of squares (SSQ)가 사용되었으며 적용한 결과는 기존 방법들과 비교하였다. Muskingum 홍수추적에서 우수한 성능을 보여준 SAVCA는 다양한 공학 문제들에 적용되어 우수한 성능을 보여줄 것으로 예상된다.

목차

요약
Abstract
1. 서론
2. 이론적 배경
3. 연구결과
4. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0