메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김영남 (충북대학교 공과대학 토목공학부) 김진철 (충북대학교 공과대학 토목공학부) 이의훈 (충북대학교 공과대학 토목공학부)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2019년도 학술발표회
발행연도
2019.1
수록면
388 - 388 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
하도 홍수추적의 방법은 크게 수리학적 방법과 수문학적 방법으로 구분할 수 있다. 수리학적 홍수추적 방법은 정확하지만 대량의 자료가 필요하고 시간이 오래 걸린다. 이와 반대로 수문학적 홍수추적 방법은 정확성은 떨어지지만 소량의 자료만 있으면 되고 시간이 적게 걸린다. 여러 수문학적 홍수추적에 관한 연구들이 있으며 대표적으로 Muskingum 방법이 있다. Muskingum 방법 중 Linear Muskingum Model(LMM)은 방정식의 구조적 한계 때문에 정확한 홍수추적이 어려웠고, 이를 개선하기위하여 Nonlinear Muskingum Model(NLMM), Nonlinear Muskingum Model Incorporation Lateral Flow(NLMM-L) 및 Advanced Nonlinear Muskingum Model Incorporating Lateral Flow(ANLMM-L)이 제안되었다. 본 연구는 수문학적 홍수추적 중 Muskingum 방법의 결과 차이가 어떤 요인으로 인해 발생하는지 검토하였다. 최적화 알고리즘으로 화음탐색법(Harmony Search, HS)을 사용하였으며 LMM, NLMM, NLMM-L 및 ANLMM-L의 매개변수를 산정하였다. 각 방법에 적용 시 HS의 매개변수에 변화를 주어 민감도 분석을 실시하였으며, 분석을 위한 홍수자료는 The Willson Flood data (1947)를 선택하였다. 오차비교방법은 Sum of Squares(SSQ), Root Mean Square Errors(RMSE), Nash-Sutcliffe Efficiency(NSE)를 비교하였다. 비교 결과 알고리즘의 성능에 의한 차이보다 홍수추적 방법의 차이가 더 영향이 큰 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0