메뉴 건너뛰기
내서재 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

외식프랜차이즈기업 부실예측모형 예측력 평가
추천
검색

Evaluating Distress Prediction Models for Food Service Franchise Industry

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국유통과학회 유통과학연구 유통과학연구 제17권 제11호 KCI등재
발행연도
2019.1
수록면
73 - 79 (7page)

이용수

표지
외식프랜차이즈기업 부실예측모형 예측력 평가
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders’ equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study’s prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study’s prediction capacity range and is considered high number.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

댓글(0)

0

첫번째 댓글을 남겨주세요.