메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제35권 제1호
발행연도
2020.1
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A \emph{pathos block line cut-vertex graph} of a tree $T$, written $PBL_{c}(T)$, is a graph whose vertices are the blocks, cut-vertices, and paths of a pathos of $T$, with two vertices of $PBL_{c}(T)$ adjacent whenever the corresponding blocks of $T$ have a vertex in common or the edge lies on the corresponding path of the pathos or one corresponds to a block $B_i$ of $T$ and the other corresponds to a cut-vertex $c_j$ of $T$ such that $c_j$ is in $B_i$; two distinct pathos vertices $P_m$ and $P_n$ of $PBL_{c}(T)$ are adjacent whenever the corresponding paths of the pathos $P_m(v_i, v_j)$ and $P_n(v_k, v_l)$ have a common vertex. We study the properties of $PBL_{c}(T)$ and present the characterization of graphs whose $PBL_{c}(T)$ are planar; outerplanar; maximal outerplanar; minimally nonouterplanar; eulerian; and hamiltonian. We further show that for any tree $T$, the crossing number of $PBL_{c}(T)$ can never be one.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0